Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Approaching the quantum limit in two-dimensional semiconductor contacts

Abstract

The development of next-generation electronics requires scaling of channel material thickness down to the two-dimensional limit while maintaining ultralow contact resistance1,2. Transition-metal dichalcogenides can sustain transistor scaling to the end of roadmap, but despite a myriad of efforts, the device performance remains contact-limited3,4,5,6,7,8,9,10,11,12. In particular, the contact resistance has not surpassed that of covalently bonded metal–semiconductor junctions owing to the intrinsic van der Waals gap, and the best contact technologies are facing stability issues3,7. Here we push the electrical contact of monolayer molybdenum disulfide close to the quantum limit by hybridization of energy bands with semi-metallic antimony (\(01\bar{1}2\)) through strong van der Waals interactions. The contacts exhibit a low contact resistance of 42 ohm micrometres and excellent stability at 125 degrees Celsius. Owing to improved contacts, short-channel molybdenum disulfide transistors show current saturation under one-volt drain bias with an on-state current of 1.23 milliamperes per micrometre, an on/off ratio over 108 and an intrinsic delay of 74 femtoseconds. These performances outperformed equivalent silicon complementary metal–oxide–semiconductor technologies and satisfied the 2028 roadmap target. We further fabricate large-area device arrays and demonstrate low variability in contact resistance, threshold voltage, subthreshold swing, on/off ratio, on-state current and transconductance13. The excellent electrical performance, stability and variability make antimony (\(01\bar{1}2\)) a promising contact technology for transition-metal-dichalcogenide-based electronics beyond silicon.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic properties of Sb \(({\bf{01}}\bar{{\bf{1}}}{\bf{2}})\)–MoS2 and Sb (0001)–MoS2 contacts from DFT calculations.
Fig. 2: Characterization of the Sb \(({\bf{01}}\bar{{\bf{1}}}{\bf{2}})\)–MoS2 contact.
Fig. 3: Electrical properties and stability of the Sb \(({\bf{01}}\bar{{\bf{1}}}{\bf{2}})\)–MoS2 contact.
Fig. 4: Short-channel MoS2 FET performance and benchmark.
Fig. 5: Variability of Sb \(({\bf{01}}\bar{{\bf{1}}}{\bf{2}})\)–MoS2 FETs.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  ADS  CAS  Google Scholar 

  2. Ahmed, Z. et al. Introducing 2D-FETs in device scaling roadmap using DTCO. In 2020 IEEE International Electron Devices Meeting 22.5.1–22.5.4 (IEEE, 2020); https://doi.org/10.1109/Iedm13553.2020.9371906.

  3. Wang, Y. & Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).

    Article  CAS  Google Scholar 

  4. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  ADS  CAS  Google Scholar 

  8. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  ADS  CAS  Google Scholar 

  9. Chou., A.-S. et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. In 2021 IEEE International Electron Devices Meeting 7.2.1–7.2.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720608.

  10. O’Brien, K. P., Penumatcha, C. J. D. A. & Maxey, K. Advancing 2D monolayer CMOS through contact, channel and interface engineering. In 2021 IEEE International Electron Devices Meeting 7.1.1–7.1.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720651.

  11. Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article  CAS  Google Scholar 

  12. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  CAS  Google Scholar 

  13. Lanza, M., Smets, Q., Huyghebaert, C. & Li, L. J. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Sze, S. M., Li, Y. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2021).

  15. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  MathSciNet  Google Scholar 

  16. Jain, A. et al. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019).

    Article  ADS  CAS  Google Scholar 

  17. Cheng, Z. et al. Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19, 5077–5085 (2019).

    Article  ADS  CAS  Google Scholar 

  18. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  ADS  CAS  Google Scholar 

  19. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  20. Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991–1995 (2013).

    Article  ADS  CAS  Google Scholar 

  21. McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article  CAS  Google Scholar 

  22. Cui, X. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    Article  ADS  CAS  Google Scholar 

  23. Wang, J. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016).

    Article  ADS  CAS  Google Scholar 

  24. Chou, A. S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42, 272–275 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Kang, J. H., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev. X 4, 031005 (2014).

    CAS  Google Scholar 

  26. Louie, S. G. & Cohen, M. L. Electronic-structure of a metal–semiconductor interface. Phys. Rev. B 13, 2461–2469 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article  ADS  Google Scholar 

  28. Jones, A. J. H. et al. Visualizing band structure hybridization and superlattice effects in twisted MoS2/WS2 heterobilayers. 2D Mater. https://doi.org/10.1088/2053-1583/ac3feb (2021).

  29. Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).

    Article  ADS  CAS  Google Scholar 

  30. Chen, H. A. et al. Single-crystal antimonene films prepared by molecular beam epitaxy: selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 10, 15058–15064 (2018).

    Article  CAS  Google Scholar 

  31. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  ADS  CAS  Google Scholar 

  32. Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current. In 2019 IEEE International Electron Devices Meeting 23.2.1–23.2.4 (IEEE, 2019); https://doi.org/10.1109/IEDM19573.2019.8993650.

  33. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Commercial and Industrial-Grade Products White Paper CTWP011 (Cactus Technology, 2019).

  35. Wu, R. et al. Filling the gap: thermal properties and device applications of graphene. Sci. China Inf. Sci. 64, 140401 (2021).

    Article  Google Scholar 

  36. Nathawat, J. et al. Transient hot-carrier dynamics and intrinsic velocity saturation in monolayer MoS2. Phys. Rev. Mater. 4, 014002 (2020).

    Article  CAS  Google Scholar 

  37. International Roadmap for Devices and Systems (IRDS, 2020); https://irds.ieee.org/

  38. International Technology Roadmap for Semiconductors (ITRS, 2015); https://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/

  39. Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol 4, 153–158 (2005).

    Article  ADS  Google Scholar 

  40. Guimaraes, M. H. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).

    Article  CAS  Google Scholar 

  41. Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. https://doi.org/10.1088/2053-1583/4/1/011009 (2016).

  42. Smithe, K. K. H., Suryavanshi, S. V., Munoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  CAS  Google Scholar 

  43. Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).

    Article  ADS  CAS  Google Scholar 

  44. Kumar, A. et al. Sub-200 Ω·μm alloyed contacts to synthetic monolayer MoS2. In 2021 IEEE International Electron Devices Meeting 7.3.1–7.3.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720609.

  45. Somvanshi, D. et al. Nature of carrier injection in metal/2D-semiconductor interface and its implications for the limits of contact resistance. Phys. Rev. B 96, 205423 (2017).

    Article  Google Scholar 

  46. Daus, A. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).

    Article  CAS  Google Scholar 

  47. Lembke, D. & Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012).

    Article  CAS  Google Scholar 

  48. Sanne, A. et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett. 15, 5039–5045 (2015).

    Article  ADS  CAS  Google Scholar 

  49. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  Google Scholar 

  51. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  CAS  Google Scholar 

  52. Jonchiere, R., Seitsonen, A. P., Ferlat, G., Saitta, A. M. & Vuilleumier, R. Van der Waals effects in ab initio water at ambient and supercritical conditions. J. Chem. Phys. 135, 154503 (2011).

    Article  ADS  Google Scholar 

  53. Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant numbers 2021YFA0715600, 2022YFB4400100, 2021YFA1500700, 2017YFA0204800 and 2021YFA1202903); the Leading-edge Technology Program of Jiangsu Natural Science Foundation (grant numbers BK20202005 and BK20222007); the National Natural Science Foundation of China (grant numbers T2221003, 61927808, 61734003, 61851401, 91964202, 61861166001, 51861145202, 22033002, 62204113, 62204124, 22222302, 11774153 and 11874199); the China Postdoctoral Science Foundation (grant numbers 2022M711549 and 2022T15036); Jiangsu Funding Program for Excellent Postdoctoral Talent (grant number 20220ZB63); the Natural Science Foundation of Jiangsu Province (grant number BK20220773); the Strategic Priority Research Program of Chinese Academy of Sciences (grant number XDB30000000); the Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and Y.S. conceived and supervised the project. W.L., Z.Y., H.N., D.F., Y.X., X.T. and H.Q. contributed to the transistor fabrication, measurements and data analysis. X.G., L.M. and J.W. performed the DFT calculations. W.S. and Y.N. performed the XRD and data analysis. Ç.K. and E.P. performed the thermal analysis. S.G., P.W., T.X. and L.S. performed the TEM and data analysis. Wenfeng Wang, L.L. and T.L. performed the chemical-vapour-deposition growth of MoS2. J. Li and X.D. performed the chemical-vapour-deposition growth of WSe2. Wenhui Wang, J. Lu and Z.N. performed the Raman characterization and data analysis. W.L., Z.Y., L.M., J.W. and X.W. co-wrote the manuscript with input from other authors. All authors contributed to discussions.

Corresponding authors

Correspondence to Yi Shi, Jinlan Wang or Xinran Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Abhinandan Borah, Hyeon-Jin Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Electronic properties of Sb/Bi-MoS2 contacts.

a, b, The simulated band diagram and local device density of states (LDDOS) of the monolayer MoS2 with double-end Sb (\(01\bar{1}2\)) electrodes: without electron doping (zero gate bias) (a) and with 1.5 electron doping (similar to high gate bias) (b). The Fermi level is set to zero.c, d, Electrostatic potential profiles of Sb (\(01\bar{1}2\))-MoS2 (c) and Sb (0001)-MoS2 (d) contacts along the vertical direction, respectively. e, f, Atomic-projected electronic band structures of Bi (\(01\bar{1}2\))-MoS2 (e) and Bi (0001)-MoS2 (f) contacts. g, The interfacial vdW interaction between MoS2 and Bi (\(01\bar{1}2\))/Bi (0001). h, The charge transfer from Bi (0112)/Bi (0001) to MoS2 by Bader charge analysis.

Extended Data Fig. 2 The atomic-projected electronic band structures and the charge density near EF of TMDs-Sb contact.

af, Left panels, atomic-projected electronic band structures (left panel) of MoSe2-Sb (\(01\bar{1}2\)) (a), WS2-Sb (\(01\bar{1}2\)) (c), WSe2- Sb (\(01\bar{1}2\)) (e), MoSe2-Sb (0001) (b), WS2-Sb (0001) (d) and WSe2-Sb (0001) (f) contacts. Right panels, charge density near EF of MoSe2-Sb (\(01\bar{1}2\)) (a), WS2-Sb (\(01\bar{1}2\)) (c), WSe2- Sb (\(01\bar{1}2\)) (e), MoSe2-Sb (0001) (b), WS2-Sb (0001) (d) and WSe2-Sb (0001) (f) contacts. The corresponding isosurface level of the charge density near EF (right panel) are 1.3×10−4 e/Bohr3 for MoSe2-Sb contact (ab), 8×10−5 e/Bohr3 for WS2-Sb (cd) and WSe2-Sb (ef) contact, respectively.

Extended Data Fig. 3 Optical, chemical and structural characterization of Sb-MoS2 interface.

a, The Low-temperature (6 k) PL spectra of. After depositing Sb film, the main exciton peak did not show widening, and no obvious defect-related emissions were observed. This proved that the deposition of Sb was friendly to 2D materials without creating defects. The sharp peak at 1.79 eV was the photoluminescence signal from the sapphire substrate. b, High-resolution XPS spectra of 2 nm Sb deposited on monolayer MoS2/sapphire, where the absence of Sb–S bond signal from Sb2S3 indicates no chemical bond formation between Sb and MoS2. c, Cross-section HAADF-STEM image of Sb (0001)-MoS2 contact. Scale bar, 1 nm. d, Zoom-in atomic-resolution image from c. The interplane distance was 0.379 nm. Scale bar, 1 nm.

Extended Data Fig. 4 Schottky barrier extraction and small footprint MoS2 FETs.

a, The temperature-dependent Ids-Vgs transfer curves of Sb (\(01\bar{1}2\))-MoS2 FET. Vds = 0.1V. b, The Arrhenius plot at various gate bias of the same device in a. c, Gate voltage dependence of the barrier height. The deviation from the linear trend (red solid line) defines the flat band voltage and shows negative Schottky barrier height. Inset shows the linear output curves of the same FET at a low temperature of 50 K with excellent linearity. d, The temperature-dependent Ids-Vgs transfer curves of Sb (0001)-MoS2 FET. Vds = 0.1V. e, The Arrhenius plot at various gate bias of the same device in d. f, Gate voltage dependence of the barrier height. The deviation from the linear trend (red solid line) defines the flat band voltage and shows positive Schottky barrier height. g, Transfer curves of two MoS2 FETs with the same Lc = 60 nm but with contact length (Lcontact) of 60 nm and 1 μm. Vds = 0.1 V. Inset is the false-colour SEM image of the device. Scale bar, 200 nm. hi, Output curves of the MoS2 FET with contact length of 1 μm (h) and 60 nm (i), respectively.

Extended Data Fig. 5 Extraction of low Rc from TLM devices with Sb \((01\bar{1}2)\)-MoS2.

ae, The left is the transfer curves of TLM devices. Vds = 0.1V, and the right is the plot of Rtot versus Lc from the left devices, from which the 2Rc can be extracted from the y-axis intercepts. Symbols are experimental data and lines are linear fits at the right figure. It is noted that TLM in e contain 9 devices with Lc equal to 60 nm, 80 nm, 200 nm, 400 nm, 600 nm, 800 nm, 1 μm and 1.5 μm. Ultralow Rc extraction from the TLM devices with sub-100-nm Lc devices further enhances confidence in ohmic contact of Sb (\(01\bar{1}2\)) -MoS2 contact. f, g, Histogram of σ (a) and R2 (b) from the linear fitting process of TLM method corresponding to the results of Sb (\(01\bar{1}2\))-MoS2 contact (115 TLMs) in Fig. 3d and e.

Extended Data Fig. 6 Comparison of MoS2 FETs with Sb (0001) and Sb \((01\bar{1}2)\) contacts.

a, Transfer characteristics of 145 MoS2 FETs (65 with Sb (0001) contact (black lines) and 80 with Sb (\(01\bar{1}2\)) contact (red lines)). Lc = 100 nm, Vds = 1V. b, The boxplot with Gaussian fitting of Ion at the same carrier density. The mean (square symbols), lower quartile (Q1, 25%), median (Q2, 50%), upper quartile (Q3, 75%), interquartile range (25%-75%) and maximum/minimum (cross symbols) are presented. The Ion of Sb (\(01\bar{1}2\)) contact is significantly improved compared with Sb (0001) contact due to the improvement of Rc.

Extended Data Fig. 7 Stability of Sb \((01\bar{1}2)\)-MoS2 contact.

a, Thermal stability of Ion for Sb and Bi contact measured at different time in 125 °C nitrogen environment. b, Transfer characteristics of a typical Sb-contact MoS2 FET measured Lc = 100 nm, Vds = 1V. cd, The output characteristics of the same device in the initial state (c) and after 24 h (d). From bottom to up, Vgs = −2 V to 10 V with 2 V step. e, Transfer characteristics of a typical Bi-contact MoS2 FET measured at different time in 125 °C nitrogen environments. Lc = 100 nm, Vds = 1V. fg, The output characteristics of the same device at 125 °C in the initial state (f) and after 24 h (g). From bottom to up, Vgs = −2 V to 10 V with 2 V step.

Extended Data Fig. 8 Short-channel MoS2 FETs with Sb \((01\bar{1}2)\)-contact.

a, Transfer characteristics of a MoS2 FET with Lc = 40 nm under Vds = 0.2 V and 1 V. Inset shows the corresponding SEM image. Scale bar, 500 nm. b, The output characteristics of the same devices in a. From bottom to up, Vgs = −2 V to 10 V with 2 V step. The solid and dotted lines are the results of the DC and pulse I-V measurements, respectively. c, Transfer characteristics of a MoS2 FET with Lc = 20 nm under Vds = 0.2 V and 1 V. Inset shows the corresponding SEM image. Scale bar, 500 nm. d, The output characteristics of the same devices in c. From bottom to up, Vgs = −2 V to 10 V with 2 V step. The solid and dotted lines are the results of the DC and pulse I-V measurements, respectively.

Extended Data Fig. 9 The steady-state temperature distribution of the short-channel MoS2 FET in Fig. 4b, c by finite-element method simulation.

a, Steady-state distribution of temperature rises across the centre cross-section of the device along the current direction, for Vds = 1 V and Ids = 1.23 mA/μm. Only half of the geometry is shown, x = 0 (halfway between the drain and source contacts) serving as the symmetry plane. A contact resistance of 100 Ω·μm is assumed in order to determine the fraction of the power dissipated at the contacts. b, The temperature rise above ambient in MoS2 (black) and the contact just above MoS2 (red) plotted as a function of position along the direction of current flow.

Extended Data Fig. 10 Ambipolar monolayer WSe2 FETs with Sb \((01\bar{1}2)\) contact.

a, Transfer curves of n-type TLM devices with Sb (\(01\bar{1}2\)) contact. Vds = 0.1 V. b, Plot of Rtot versus Lc from n-type TLM devices with Sb (\(01\bar{1}2\)) contact (red symbols) and Ti contact (blue symbols), from which the 2Rc can be extracted from the y-axis intercepts. Symbols are experimental data and lines are linear fits at b. cd, Performance comparison of n-type monolayer WSe2 FETs with Sb (\(01\bar{1}2\)) contact (red) and Ti contact (blue). Lc = 100 nm. c shows the transfer curves at Vds = 0.1 V. d shows the output curves at Vgs from 0 V to 40 V with 4 V step with the same devices at c. e, Transfer curves of p-type TLM devices with Sb (\(01\bar{1}2\)) contact. Vds = −0.1 V. f, Plot of Rtot versus Lc from p-type TLM devices with Sb (\(01\bar{1}2\)) contact (red symbols) and Ti contact (blue symbols), from which the 2Rc can be extracted from the y-axis intercepts. Symbols are experimental data and lines are linear fits at f. gh, Performance comparison of p-type monolayer WSe2 FETs with Sb (\(01\bar{1}2\)) contact (red) and Ti contact (blue). Lc = 100 nm. g shows the transfer curves. Vds = −0.1 V. h shows the output curves at Vgs from 0 V to −50 V with −5 V step with the same devices at g.

Extended Data Table 1 Variability data analysis and benchmark42,53

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Gong, X., Yu, Z. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05431-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing